Lycée ERRAZI, Taznakht

Notation Arithmétique dans Notation Notation Arithmétique dans Notation No

Pr. LATRACH Abdelkbir Année scolaire : 2017 – 2018

Soit $n \in \mathbb{N}$.

Étudier la parité de nombres suivants :

4n+300 ; 14n+111 ; 731×432 ; $2^{n+1}+15$; $4n^2+8n+13$; n(n+1);

 $n^2 + 5n + 3$; $n(n+1)(n^2 + 5n + 3)$.

Soit $n \in \mathbb{N}$. On pose : a = 2n + 4 et b = 6n + 11.

- ① Étudier la parité de a et b.
- ② Simplifier le nombre $(6n+11)(-1)^{2n+4} (2n+4)(-1)^{6n+11}$.
- 3 Monter que $a^2 + (b+1)^2$ est un multiple de 20.

Soit $n \in \mathbb{N}$.

On pose : $a = 2^{n+3} - 5 \times 2^n$ et $b = 7^{n+1} \times 2^{n+3}$.

Montrer que a est multiple de 3 et que 56 divise b.

- ① Déterminer le chiffre a tel que le nombre 5a74 soit divisible par 3.
- ② Déterminer le chiffre b tel que le nombre 815b soit divisible à la fois par 2 et 9 .
- ③ Déterminer le chiffre c tel que le nombre 921c soit divisible par 3 et non pas par 9.

Parmi la liste de nombres ci-dessous, indiquer ceux qui sont premiers : 25422 ; 101 ; 70107 ; 137 ; 15631.

Soit n un entier naturel impair.

- ① Étudier la parité de $n^2 1$ et $n^2 + 1$.
- ② Montrer que 8 divise $n^2 1$.
- 3 En déduire que 16 divise $n^4 1$.

- ① Vérifier que pour tout entier naturel n: $n^2 + 4n + 9 = (n+3)(n+1) + 6$.
- ② Déterminer tous les valeurs de l'entier naturel n pour que le nombre n+3 divise n^2+4n+9 .

Soient n et m deux entiers naturels.

- ① Montrer que m + n et m n ont la même parité.
 - ② Déterminer tous les nombres entiers m et n qui vérifient : $m^2 n^2 = 12$.

- ① Déterminer les diviseurs du nombre 22.
- ② En déduire tous les entiers naturels x et y qui vérifient : (x+2)(y+1) = 22.

- ① Décomposer en produit de facteurs premiers les nombres : 495 ; 156 ; 1404 ; 4056.
- ② Simplifier l'écriture des nombres suivants : $\frac{1404}{4056}$; $\sqrt{1404 \times 4056}$; $\frac{495}{1404} + \frac{156}{4056}$
- ③ Déterminer: pgcd(495,156); pgcd(495,1404); pgcd(1404,4056) ppcm(495,156); ppcm(495,1404); ppcm(1404,4056).

Soient a et b deux entiers naturels tels que : a = 4680 et b = 5940.

- ① Décomposer a et b en produit de facteurs premiers.
- ② En déduire la décomposition en produit de facteurs premiers de $a^2 \times b^3$.
- ③ Déterminer pgcd(a, b) et ppcm(a, b) puis vérifier que : $pgcd(a, b) \times ppcm(a, b) = ab$.
- ① Déterminer le plus petit entier naturels m tel que ma soit un carré parfait.
- \odot Déterminer le plus petit entier naturels n tel que nb soit un cube d'un entier naturel.
- **6** Simplifier: $\frac{a}{b}$ et \sqrt{ab} .

Pour tout $n \in \mathbb{N}$, on pose : $x = 7^{n+2} - 7^n$ et $y = 3 \times 7^{n+1} + 5 \times 7^n$.

- ① Montrer que *x* est divisible par 3 et que *y* est un multiple de 13
- ② Décomposer, en fonction de n, les nombres x et y en produit de facteurs premiers.
- ③ Déterminer pgcd(x, y) et ppcm(x, y) en fonction de n.

Soit $n \in \mathbb{N}$.

- ① Développer $(n+1)^2 n^2$.
- ② En déduire que tout nombre impair peut s'écrit comme la différence des carrés de deux entiers consécutifs.
- 3 Application : Montrer que 2017 est la différence de deux carrés d'entiers consécutifs.
- **4** Soit $a = n^2 + n + 7$.
 - a) Montrer que a est impair.
 - *b*) En déduire que *a* est la différence de deux carrés d'entiers consécutifs.